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Abstract
In	the	vascular	system,	an	extensive	network	structure	provides	convective	and	
diffusive	 transport	of	oxygen	 to	 tissue.	 In	 the	microcirculation,	parameters	de-
scribing	network	structure,	blood	flow,	and	oxygen	transport	are	highly	heteroge-
neous.	This	heterogeneity	can	strongly	affect	oxygen	supply	and	organ	function,	
including	 reduced	 oxygen	 uptake	 in	 the	 lung	 and	 decreased	 oxygen	 delivery	
to	tissue.	The	causes	of	heterogeneity	can	be	classified	as	extrinsic	or	intrinsic.	
Extrinsic	heterogeneity	refers	to	variations	in	oxygen	demand	in	the	systemic	cir-
culation	or	oxygen	supply	in	the	lungs.	Intrinsic	heterogeneity	refers	to	structural	
heterogeneity	 due	 to	 stochastic	 growth	 of	 blood	 vessels	 and	 variability	 in	 flow	
pathways	 due	 to	 geometric	 constraints,	 and	 resulting	 variations	 in	 blood	 flow	
and	hematocrit.	Mechanisms	have	evolved	to	compensate	for	heterogeneity	and	
thereby	improve	oxygen	uptake	in	the	lung	and	delivery	to	tissue.	These	mecha-
nisms,	which	involve	long-	term	structural	adaptation	and	short-	term	flow	regula-
tion,	depend	on	upstream	responses	conducted	along	vessel	walls,	and	work	to	
redistribute	flow	and	maintain	blood	and	tissue	oxygenation.	Mathematically,	the	
variance	of	a	functional	quantity	such	as	oxygen	delivery	that	depends	on	two	or	
more	heterogeneous	variables	can	be	reduced	if	one	of	the	underlying	variables	
is	controlled	by	an	appropriate	compensatory	mechanism.	Ineffective	regulatory	
mechanisms	can	result	in	poor	oxygen	delivery	even	in	the	presence	of	adequate	
overall	tissue	perfusion.	Restoration	of	endothelial	function,	and	specifically	con-
ducted	responses,	should	be	considered	when	addressing	tissue	hypoxemia	and	
organ	failure	in	clinical	settings.
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1 	 | 	 INTRODUCTION

Adequate	delivery	of	oxygen	to	metabolically	active	tissue	
is	the	most	critical	demand	placed	on	the	vascular	system.	
Lack	 of	 oxygen	 (hypoxia	 or	 anoxia)	 causes	 dysfunction	
and	 damage	 to	 tissue,	 sometimes	 within	 minutes.	 The	
mammalian	 cardiovascular	 system	 relies	 on	 convection	
to	deliver	oxygen	via	a	network	of	blood	vessels	that	are	
contained	within	the	tissue	they	supply,	and	on	diffusion	
from	 these	 vessels	 to	 mitochondria	 for	 ATP	 production.	
Since	the	typical	maximum	distance	that	oxygen	can	dif-
fuse	 from	blood	vessels	 into	oxygen-	consuming	 tissue	 is	
only	20–	100 μm	(Secomb	et	al.,	1993a),	normal	oxidative	
metabolism	and	organ	function	require	a	network	of	tiny	
vessels	to	provide	convective	transport	within	a	short	dis-
tance	from	each	cell.	Tissue	oxygen	levels	are	sensitively	
dependent	on	the	spatial	arrangement	of	microvessels	and	
the	spatial	and	temporal	distribution	of	flow.

According	 to	 Poiseuille's	 law,	 resistance	 to	 blood	
flow	 increases	 rapidly	 with	 decreasing	 vessel	 diameter.	
Efficient	 convective	 transport	 over	 larger	 distances	 re-
quires	 larger	 diameter	 vessels,	 arranged	 in	 a	 hierarchi-
cal	 branching	 structure.	 Microvascular	 networks	 must	
therefore	combine	hierarchical	bifurcating	structures	 for	
efficient	 convective	 transport	 with	 mesh-	like	 structures	
providing	short	diffusion	distances	(Secomb	et	al.,	2013),	
as	illustrated	in	Figure	1a,b.

It	was	recognized	many	years	ago	 that	microvascular	
structure	and	flow	are	inherently	heterogeneous,	and	that	
this	has	important	functional	consequences	(Klitzman	&	
Johnson,	 1982).	 In	 1987,	 Duling	 and	 Damon	 stated	 that	
“a	clear	delineation	of	the	amount	of	microvascular	flow	
heterogeneity	 and	 its	 control	 in	 the	 microcirculation	 is	
essential	 to	 our	 understanding	 of	 the	 interplay	 between	
tissue	function	and	vascular	perfusion”	(Duling	&	Damon,	
1987).	This	has	been	corroborated	by	theoretical	simula-
tions,	which	imply	that	tissue-	level	bulk	transport	param-
eters	can	be	significantly	affected	by	heterogeneity	(Piiper	
&	 Haab,	 1991;	 Walley,	 1996).	 Technical	 advances	 have	
facilitated	the	quantification	of	structural	and	functional	
heterogeneity	 (Frisbee	 et	 al.,	 2011a;	 Pries	 et	 al.,	 1995a,	
2008;	 Sarelius,	 1990;	 Zuurbier	 et	 al.,	 1999).	The	 medical	
significance	 of	 dysfunctional	 distribution	 of	 blood	 flow	
and/or	 oxygen	 at	 the	 microvascular	 level	 has	 been	 in-
creasingly	 recognized.	 Examples	 include	 “microvascular	
angina”	 (i.e.,	 without	 arterial	 blockage,	 also	 known	 as	
cardiac	syndrome	X)	(Cannon	&	Epstein,	1988;	Lanza	&	
Crea,	2010),	 the	possible	 role	of	 impaired	neurovascular	
regulation	in	neurodegenerative	diseases	(Iadecola,	2004),	
and	failure	of	local	flow	regulation	as	a	cause	of	organ	fail-
ure	in	sepsis	(Ince,	2005).	These	findings	have	emphasized	
the	need	for	better	understanding	of	the	causes	of	hetero-
geneity	in	the	microcirculation,	how	heterogeneity	affects	

exchange	of	oxygen,	and	the	biological	mechanisms	that	
mitigate	its	effects.

For	a	non-	negative	random	variable,	such	as	vessel	di-
ameter,	length	or	flow	rate,	a	simple	dimensionless	mea-
sure	of	heterogeneity	 is	 its	 coefficient	of	variation	 (CV),	
defined	as	the	ratio	of	standard	deviation	to	mean.	Values	
of	 the	CV	derived	 from	observations	and	 simulations	of	
mesenteric	microvascular	networks	are	shown	in	Table	1	
(Pries	et	al.,	1995b).	These	range	up	to	2	or	more	for	flow	
rate	and	erythrocyte	flux.	The	significance	of	such	CV	val-
ues	is	illustrated	by	Figure	2,	which	shows	plots	of	lognor-
mal	 distributions	 with	 CV	 values	 of	 0.5,	 1,	 and	 1.5,	 and	
with	mean	of	1.	For	a	CV	of	1	or	more,	these	distributions	
are	 strongly	 right-	skewed,	 with	 a	 high	 density	 of	 values	
less	than	the	mean	and	a	long	tail	of	much	higher	values.

To	illustrate	the	effects	of	heterogeneity	on	transport,	
simulated	 results	 are	 presented	 in	 Figure	 3	 for	 oxygen	
delivery	by	an	array	of	Krogh	cylinders	with	a	lognormal	
distribution	of	flows,	characterized	by	CV.	Details	of	the	
simulation	are	provided	 in	 the	caption.	As	 the	CV	 is	 in-
creased,	oxygen	consumption	and	extraction	decrease,	be-
cause	 tissue	becomes	hypoxic	 in	 regions	with	 low	blood	
flow	rates.	Observations	in	mesentery	indicate	CV = 1.76	
for	capillary	flow	(Pries	et	al.,	1995b).	The	corresponding	
reduction	 in	 oxygen	 consumption,	 relative	 to	 CV  =  0,	
ranges	 from	 24%	 at	 low	 oxygen	 demand	 to	 31%	 at	 high	
oxygen	demand.	This	simulation	suggests	 that	heteroge-
neity	 in	 the	 microcirculation	 cannot	 be	 regarded	 simply	
as	random	“noise”	superimposed	on	functional	variables,	
but	is	itself	an	important	determinant	of	oxygen	transport	
properties.	In	the	lung,	simulating	heterogeneity	of	flow	at	
the	alveolar	level	similarly	decreases	the	predicted	effec-
tive	diffusing	capacity	for	oxygen	(Roy	&	Secomb,	2019).

In	this	review,	we	discuss	the	origins	of	heterogeneity,	its	
effects	on	oxygen	transport,	and	the	mechanisms	by	which	
its	effects	are	mitigated	(Figure	4).	The	perspective	of	Pries	
&	Secomb	(2009)	is	adopted,	according	to	which	heteroge-
neity	of	tissue	oxygen	levels	is	an	inevitable	consequence	of	
the	physiological	 functions	of	 the	vasculature,	 the	mecha-
nisms	 of	 vascular	 growth,	 and	 geometrical	 constraints.	 In	
a	 normally	 functioning	 organ,	 active	 mechanisms	 of	 flow	
regulation	and	structural	adaptation	allow	adequate	organ	
function	by	compensating	for	this	heterogeneity,	while	also	
adjusting	local	flows	in	response	to	spatial	and	temporal	vari-
ations	in	metabolic	demand.	In	the	lung,	the	local	matching	
of	perfusion	to	varying	levels	of	ventilation	is	required	to	en-
sure	adequate	oxygen	uptake	and	maintain	arterial	oxygen	
saturation.	In	pathophysiological	states	or	aging,	decreased	
ability	to	compensate	for	heterogeneity	contributes	to	func-
tional	deficits	and	eventual	organ	dysfunction.	Better	under-
standing	of	these	phenomena	may	therefore	provide	a	basis	
for	approaches	to	improve	oxygen	delivery	and	organ	func-
tion	in	such	conditions.
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2	 |	 ORIGINS OF MICROVASCULAR 
HETEROGENEITY

Heterogeneity	 at	 the	 microvascular	 level	 can	 be	 broadly	
classified	as	extrinsic,	arising	in	response	to	variations	in	
metabolic	demand	in	the	systemic	circulation	or	ventila-
tion	in	the	lung,	or	intrinsic,	resulting	from	the	inherent	
characteristics	of	microvascular	structures.

2.1	 |	 Extrinsic heterogeneity

Most	tissues	of	the	body	are	subject	to	transient	increases	
in	oxygen	demand	above	baseline	to	meet	functional	re-
quirements.	 Skeletal	 muscle,	 heart,	 brain,	 kidney,	 liver,	

and	intestinal	mucosa	all	exhibit	periods	of	increased	ac-
tivity.	The	resulting	transient	increases	in	oxygen	demand	
may	 be	 spatially	 heterogeneous,	 as	 for	 example	 when	 a	
subpopulation	of	motor	units	is	activated	in	muscle.	The	
term	extrinsic heterogeneity	is	used	here	to	refer	to	spatial	
and	 temporal	 variations	 in	 functional	 characteristics	 of	
the	tissue,	such	as	oxygen	demand	in	systemic	tissues	and	
oxygen	availability	in	the	lung.

In	 skeletal	 muscle,	 the	 differential	 characteristics	 of	
muscle	 fiber	 types	 in	 terms	 of	 recruitment	 and	 oxygen	
demand	 at	 different	 levels	 of	 exercise	 (e.g.	 increased	 re-
cruitment	of	fast	twitch	fibers	at	higher	running	speeds)	
can	cause	both	spatial	and	temporal	heterogeneity	as	ex-
ercise	is	initiated	(Koga	et	al.,	2014);	this	is	corroborated	
by	 measurements	 demonstrating	 spatial	 heterogeneity	

F I G U R E  1  Schematic	diagrams	illustrating	how	geometric	constraints	and	basic	characteristics	of	mass	transport	processes	lead	to	
intrinsic	heterogeneity	in	the	microcirculation.	Arrows	indicate	directions	of	blood	flow.	Color	variations	indicate	oxygen	levels	in	the	
blood.	Structures	shown	do	not	represent	actual	microvascular	network	geometries.	(a)	The	short	diffusion	distance	of	oxygen	dictates	that	
microvessels	must	form	a	fine	mesh	throughout	the	tissue.	(b)	High	flow	resistance	in	capillary-	sized	vessels	dictates	that	they	must	be	fed	
and	drained	by	hierarchical	trees	of	larger-	diameter	arterioles	and	venules,	to	provide	efficient	convective	transport	over	larger	distances.	
Actual	microvascular	networks	represent	a	combination	of	these	two	types	of	structures.	(c)	The	‘dimensional	problem’	of	vascular	supply.	
Homogeneous	capillary	supply	to	a	two-	dimensional	tissue	region	(grey	sheet)	can	be	achieved	if	the	feeding	and	draining	vessels	form	
symmetric	branching	structures	in	the	third	dimension.	If,	however,	the	region	being	supplied	is	three-	dimensional,	feeding	and	draining	
vessels	must	lie	within	the	region	being	supplied	and	so	such	a	symmetric	structure	is	not	possible.	(d)	Feeding	and	draining	vessels	are	
often	adjacent,	which	leads	to	heterogeneous	path	lengths
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in	 quadriceps	 deoxygenation	 with	 exercise	 (Koga	 et	 al.,	
2011).

Increases	 in	 systemic	 oxygen	 consumption	 (such	 as	
during	exercise)	result	in	an	increased	heart	rate	and	con-
tractility,	with	a	resultant	 increase	 in	oxygen	demand	 in	
the	 heart.	 The	 increase	 in	 heart	 rate	 results	 in	 a	 higher	
proportion	of	 time	 in	 systole,	 and	 subendocardial	vessel	
compression	results	in	decreased	blood	flow	during	mus-
cle	 contraction	 (Duncker	 et	 al.,	 2015),	 creating	 a	 spatial	
gradient	 from	 endocardium	 to	 epicardium	 in	 systolic	
perfusion.

In	the	brain,	oxygen	demand	varies	according	to	neural	
activity;	 these	variations	can	occur	at	the	regional	or	 local	
level	 and	 have	 been	 documented	 using	 functional	 MRI	
(Buxton,	 2010)	 and	 confocal	 microscopy	 (Yaseen	 et	 al.,	
2011).	 This	 process,	 termed	 neurovascular	 coupling,	 aug-
ments	oxygen	delivery	to	accommodate	demand	(Girouard	

&	Iadecola,	2006;	Weber	et	al.,	2015).	Extrinsic	heterogeneity	
in	flow	can	also	result	from	occlusions	of	the	microvascula-
ture	due	to	microthrombi	(Hu	&	Stiefel,	2016;	Molina,	2011).

T A B L E  1 	 Coefficients	of	variation	(CV)	for	structural	and	
functional	parameters	of	microvascular	networks.	Data	from	(Pries	
et	al.,	1995b)

Arterioles Capillaries Venules

CV	of	diameter 0.41 0.28 0.53

CV	of	length 0.83 0.65 0.82

CV	of	hematocrit 0.41 0.60 0.41

CV	of	velocity 0.84 0.99 0.65

CV	of	volume	
flow

2.23 1.76 1.86

CV	of	erythrocyte	
flow

2.22 1.92 1.86

CV	of	shear	rate 0.92 1.62 0.97

CV	of	pressure	
gradient

1.57 2.00 1.75

F I G U R E  2  Diagram	illustrating	lognormal	probability	density	
functions	corresponding	to	selected	CV	values	as	indicated,	for	
variables	with	a	mean	of	1

F I G U R E  3  Effect	of	heterogeneity	in	blood	flow,	as	measured	
by	CV,	on	extraction	and	oxygen	consumption.	For	each	level	of	
tissue	oxygen	demand,	the	CV	of	the	flow	rates	is	varied,	while	
holding	the	total	flow	fixed.	Simulations	were	conducted	for	a	
simplified	representation	of	a	tissue	supplied	by	multiple	identical	
parallel	capillaries	with	heterogeneous	flow	rates	represented	by	
a	lognormal	distribution	with	a	given	CV.	Oxygen	transport	was	
simulated	in	each	cylinder	using	a	modified	Krogh	cylinder	model	
(McGuire	&	Secomb,	2001),	taking	into	account	the	axial	decline	of	
blood	oxygen	content	along	the	cylinder	and	assuming	Michaelis-	
Menten	kinetics	for	oxygen	consumption	rate	as	a	function	of	
oxygen	tension.	Parameters	are	as	specified	in	McGuire	and	
Secomb	(McGuire	&	Secomb,	2001),	with	the	exception	of	a	half-	
maximal	oxygen	consumption	value	of	10.5 mmHg,	and	a	capillary	
density	of	787.25 mm−2 calculated	as	the	average	of	values	cited	
in	the	aforementioned	study	(McGuire	&	Secomb,	2001).	Other	
parameters	include	a	capillary	radius	of	2.5 µm	and	a	nominal	
capillary	length	of	500 µm	(McGuire	&	Secomb,	2001).	Femoral	
muscle	mass	is	assumed	to	be	2.3 kg	(Andersen	&	Saltin,	1985).	
Values	of	muscle	blood	flow	[L/min]	corresponding	to	four	levels	
of	demand	(80,	40,	20,	and	10 cm3O2/100 cm3/min)	were	estimated	
based	on	a	regression	from	published	data	(Andersen	&	Saltin,	
1985)	as	1.035 + 5.594 × V̇O2	[L/min],	where	V̇O2	is	the	calculated	
oxygen	consumption	rate.	The	vertical	dashed	line	corresponds	to	a	
CV = 1.76	(see	text)
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The	 kidney,	 liver,	 and	 gut	 all	 exhibit	 a	 high	 degree	
of	 variability	 in	 oxygen	 consumption	 due	 to	 temporal	
changes	in	demand	(e.g.,	toxin	clearance	or	postprandial	
transport).	The	kidney	is	unique	in	its	compartmentaliza-
tion,	with	 its	 cortex	 functioning	 to	 filter	and	absorb	sol-
utes	 and	 the	 medulla	 responsible	 for	 water	 resorption.	
The	 bulk	 of	 blood	 flow	 goes	 to	 the	 cortex,	 which	 main-
tains	 much	 higher	 oxygen	 tensions	 (Molema	 &	 Aird,	
2012).	Renal	oxygen	consumption	is	dependent	in	part	on	
the	rate	of	sodium	resorption,	which	requires	ATP	(Lee,	
Gardiner,	et	al.,	2017;	Lee,	Ngo,	et	al.,	2017).	The	kidney	is	
susceptible	to	hypoxia,	which	is	associated	with	acute	and	
chronic	kidney	disease	(Ow	et	al.,	2018).

As	an	organ	of	oxygen	uptake,	the	lung	exhibits	con-
siderable	 heterogeneity	 in	 terms	 of	 oxygen	 availability	
in	different	regions.	Both	ventilation	and	perfusion	are	
heterogeneous	on	different	scales,	with	ventilation/per-
fusion	ratios	differing	in	dependent	portions	of	the	lung	
(West,	1969,	2004).	The	large-	scale	effect	of	gravity	is	ex-
ploited	in	critically	ill	patients	by	using	prone	position-
ing	 to	 restore	 ventilation	 to	 atelectatic	 portions	 of	 the	
lung	in	conditions	such	as	ARDS	(Johnson	et	al.,	2017;	
Lamm	et	al.,	 1994).	The	structure	of	 the	 lung,	with	 its	
lobes	and	secondary	lobules,	 introduces	spatial	hetero-
geneity	 in	 oxygen	 supply,	 since	 vessels	 from	 the	 bron-
chial	 circulation	 follow	 this	 organization.	 At	 smaller	
scales,	 the	branching	structure	 leads	 to	decreased	 flow	
in	 the	 distal	 part	 of	 the	 tracheobronchial	 tree	 and	 can	
lead	 to	 diffusional	 screening	 of	 oxygen	 according	 to	
theoretical	predictions	(Felici	et	al.,	2003,	2005;	Sapoval	
et	al.,	2002).

2.2	 |	 Intrinsic heterogeneity

The	term	intrinsic heterogeneity	is	used	here	to	refer	to	var-
iations	in	oxygen	supply	as	a	consequence	of	the	inherent	
characteristics	 of	 vascular	 network	 structure,	 including	
segment	 lengths,	 diameters,	 mechanical	 properties	 such	
as	stiffness,	and	connectivity,	as	well	as	the	particulate	na-
ture	of	blood.

The	locations	and	dimensions	of	larger	vessels	in	mam-
malian	circulatory	systems	are	 largely	genetically	prede-
termined.	 In	 contrast,	 the	 microcirculation	 is	 a	 largely	
self-	organizing	structure,	in	which	the	processes	of	angio-
genesis,	structural	remodeling,	and	pruning	of	redundant	
vessels	are	governed	by	a	set	of	generic	responses	to	local	
stimuli	 (Pries	 &	 Secomb,	 2014;	 Secomb	 et	 al.,	 2013),	 re-
sulting	in	heterogeneous	structures	(Frisbee	et	al.,	2011b;	
Pries	 et	 al.,	 1995b,	 2008;	 Sarelius,	 1990;	 Zuurbier	 et	 al.,	
1999).

One	 inherent	 source	 of	 structural	 heterogeneity	
derives	 from	 the	 embedding	 of	 a	 branching	 network	

within	 the	 same	 region	 that	 is	 supplied.	 This	 “dimen-
sional	problem”	(Pries	&	Secomb,	2009)	can	be	appreci-
ated	by	considering	that	a	 two-	dimensional	region	can	
be	 readily	 supplied	 by	 a	 three-	dimensional	 symmetri-
cally	branching	vascular	network,	in	which	all	pathways	
and	 flows	 are	 equivalent	 (Figure	 1c).	 If,	 however,	 the	
region	to	be	supplied	is	three-	dimensional,	 this	cannot	
be	achieved,	and	non-	equivalent	flow	pathways	must	be	
present.	Furthermore,	 feeding	and	draining	vessels	are	
often	adjacent	to	each	other,	creating	more	heterogene-
ity	among	flow	pathways	(Figure	1d).

Because	 of	 the	 dependence	 of	 flow	 resistance	 in	
blood	 vessels	 on	 length	 and	 diameter	 in	 accordance	
with	Poiseuille's	law	(Pries	et	al.,	2008),	wide	variations	
in	flow	occur	due	to	the	structural	heterogeneity	of	mi-
crovascular	networks	 (Duling,	1994;	Duling	&	Damon,	
1987;	Ellsworth	et	al.,	1988;	Klitzman	&	Johnson,	1982;	
Pries	 et	 al.,	 1996).	 Heterogeneity	 in	 erythrocyte	 fluxes	
can	 be	 exacerbated	 by	 the	 particulate	 nature	 of	 blood	
(Secomb,	 1991),	 as	 manifested	 by	 the	 phenomenon	 of	
phase	 separation.	This	uneven	partitioning	of	hemato-
crit	 at	 diverging	 bifurcations	 occurs	 because	 erythro-
cytes	 preferentially	 enter	 the	 branch	 with	 higher	 flow.	
Consequences	 include	 wide	 variations	 in	 microvessel	
hematocrit,	viscosity,	and	flow	(Pries	et	al.,	1986,	1990,	
2008)	and	increased	heterogeneity	of	oxygen	delivery.	If	
a	daughter	branch	has	zero	hematocrit,	a	plasma	chan-
nel	is	formed.	The	likelihood	of	plasma	channel	forma-
tion	increases	with	anemia	or	hemodilution	(Pries	et	al.,	
1992),	 leaving	 surrounding	 tissue	 hypoxic	 (Morisaki	
et	al.,	1996).	Vasomotion	(Aalkjaer	et	al.,	2011;	Arciero	
&	Secomb,	2012),	i.e.,	spontaneous	oscillations	in	vessel	
diameter,	can	result	in	temporal	variations	in	blood	flow	
and	oxygen	transport.

Microvascular	 networks	 in	 solid	 tumors	 are	 highly	
heterogeneous	 in	 their	 structure,	 blood	 flow,	 and	 oxy-
genation	 characteristics.	 This	 abnormal	 heterogeneity	
may	result	from	impaired	structural	adaptation	mecha-
nisms,	and	in	particular	from	lack	of	normal	conducted	
responses	 in	 tumor	 vasculature	 due	 to	 dysfunctional	
communication	 between	 endothelial	 cells	 (Pries	 et	 al.,	
2009).	Phase	separation	at	successive	bifurcations	leads	
to	significant	numbers	of	vessels	with	few	or	no	erythro-
cytes	(Dewhirst	et	al.,	1996).	In	normal	healthy	tissues,	
regulatory	mechanisms	act	to	reduce	the	occurrence	of	
plasma	channels,	but	tumor	microvessels	with	dysfunc-
tional	 regulation	 demonstrate	 high	 numbers	 of	 such	
vessels.	 Altered	 patterns	 of	 VEGF	 secretion	 in	 tumors	
stimulate	 abnormal	 patterns	 of	 angiogenesis,	 leading	
to	 regions	 of	 low	 flow	 and	 hypoxia	 even	 under	 condi-
tions	 of	 high	 overall	 perfusion	 (Gillies	 et	 al.,	 1999).	
Heterogeneous	 flow	 distributions,	 combined	 with	 in-
creases	 in	 vascular	 permeability	 and	 impairment	 of	
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conducted	responses	responsible	 for	effective	 flow	reg-
ulation,	 results	 in	 regions	of	hypoxia	and	acidosis	 that	
can	limit	the	effectiveness	of	radiation	and	chemother-
apeutic	agents	(Dewhirst	&	Secomb,	2017).	Simulations	
suggest	 that	 temporal	 fluctuations	 in	 oxygenation	 can	
also	 have	 implications	 for	 therapy,	 since	 transient	 hy-
poxia	may	coincide	with	treatment	such	as	chemother-
apy	and	radiation	(Cardenas-	Navia	et	al.,	2007).

A	 number	 of	 disease	 states	 including	 hypertension	
(Feihl	et	al.,	2006;	Triantafyllou	et	al.,	2015),	the	metabolic	
syndrome	 (Paavonsalo	 et	 al.,	 2020),	 and	 renal	 disease	
(Afsar	 et	 al.,	 2018)	 are	 associated	 with	 capillary	 rarefac-
tion,	 a	 reduction	 in	 capillary	 density.	 The	 resulting	 de-
crease	in	blood	flow	due	to	increased	vascular	resistance	
can	impair	oxygen	delivery	and	make	the	tissue	more	vul-
nerable	to	hypoxia	as	a	consequence	of	microvascular	het-
erogeneity	(Tickle	et	al.,	2020).

More	 generally,	 heterogeneity	 in	 vascular	 reactivity	
may	be	due	in	part	to	variations	in	the	receptors	and	chan-
nels	 involved	 in	 flow	 regulation,	 such	 as	 potassium	 and	
calcium	channels	expressed	in	different	vascular	beds	and	
in	pathophysiological	states,	as	well	as	differences	in	adre-
noceptor	distribution	(Davis	et	al.,	2008).	Passive	mechan-
ical	properties	of	microvessels	may	also	be	heterogeneous	
and	this	would	contribute	to	heterogeneity	in	their	vaso-
active	responses.

2.3	 |	 Quantification of heterogeneity in 
flow and oxygen delivery

Heterogeneity	can	be	quantified	by	examining	the	distri-
butions	of	variables	related	to	structure,	hemodynamics,	
and	oxygen	levels.	For	structural	heterogeneity,	relevant	
variables	 are	 segment	 lengths,	 segment	 diameters,	 and	
path	 lengths.	 For	 hemodynamic	 heterogeneity,	 relevant	
variables	 include	 segment	 flow	 rates	 and	 hematocrits	
(Pries	et	al.,	1995b,	1996).	As	discussed	in	the	Introduction,	
the	coefficient	of	variation	(CV)	is	a	basic	measure	of	het-
erogeneity	 in	 these	 variables.	 Measures	 of	 heterogene-
ity	may	vary	according	to	the	spatial	resolution	at	which	
measurements	are	made.	Studies	of	 regional	myocardial	
blood	 flow	 (Bassingthwaighte	 et	 al.,	 1989)	 showed	 that	
the	variability	of	flow	increased	when	assessed	at	progres-
sively	smaller	scales,	and	could	be	characterized	using	a	
fractal	dimension.

The	distribution	of	oxygen	tensions	within	tissue	is	a	
critical	determinant	of	organ	 function.	A	common	mea-
sure	 of	 tissue	 hypoxia	 is	 the	 hypoxic	 fraction,	 i.e.,	 the	
fraction	 of	 tissue	 at	 an	 oxygen	 tension	 under	 a	 critical	
value,	below	which	tissue	function	is	significantly	limited	
by	 lack	of	oxygen.	Experimental	determination	of	 tissue	
oxygen	levels	is	challenging	because	steep	gradients	exist	
on	microscopic	scales.	Theoretical	simulations	of	oxygen	
transport	 can	 be	 used	 to	 predict	 the	 spatial	 distribution	
of	 oxygen	 levels	 on	 microvascular	 scales	 (Secomb	 et	 al.,	
1993b,	2000,	2004).

The	 multiplicity	 of	 flow	 pathways	 results	 in	 a	 dis-
tribution	 of	 transit	 times	 for	 blood	 passing	 through	 a	
tissue.	The	 standard	 deviation	 of	 transit	 times,	 termed	
capillary	transit	time	heterogeneity	(CTH),	has	been	pro-
posed	as	a	means	to	quantify	the	effects	of	heterogeneity	
on	 tissue	 oxygenation	 (Jespersen	 &	 Ostergaard,	 2012).	
Simulations	 suggest	 that	 CTH	 increases	 in	 pathophys-
iological	conditions	(Jespersen	&	Ostergaard,	2012),	re-
sulting	in	functional	deficits	in	the	brain	(Angleys	et	al.,	
2015;	Ostergaard	et	al.,	2014).	The	use	of	CTH	as	a	func-
tional	measure	of	heterogeneity	is	supported	by	consid-
eration	of	the	effects	of	transit	time	on	oxygen	transport.	
Long	 transit	 times	 result	 in	 depletion	 of	 intracapillary	
oxygen	and	hypoxia,	whereas	short	 transit	 times	result	
in	a	low	level	of	oxygen	extraction.	However,	reduction	
of	CTH	does	not	necessarily	imply	improved	tissue	ox-
ygenation.	 In	 a	 heterogeneous	 network,	 optimal	 oxy-
gen	delivery	would	require	variation	in	capillary	transit	
times	to	compensate	for	heterogeneity	of	capillary	diam-
eters	and	inter-	capillary	distances.

An	 alternative	 measure	 of	 oxygen	 supply	 variation	
that	has	been	used	in	theoretical	modeling	is	the	capillary	
outflow	saturation	heterogeneity,	or	COSH	(Lucker	et	al.,	
2018a,	2018b).	This	is	proposed	as	a	more	direct	measure	

F I G U R E  4  Schematic	representation	of	factors	contributing	
to	the	heterogeneity	of	tissue	oxygen	levels.	Arrow	with	blunt	
end	represents	negative	effect.	Microvascular	networks	have	
heterogeneous	structures	as	a	result	of	the	“dimensional	problem”	
and	the	stochastic	processes	of	angiogenesis,	with	the	consequence	
that	oxygen	supply	is	intrinsically	heterogeneous.	Oxidative	
metabolism	in	tissues	and	ventilation	in	the	lung	vary	in	both	space	
and	time,	causing	extrinsic	heterogeneity	in	tissue	oxygen	levels.	
Multiple	control	mechanisms	act	on	both	short	and	long	time	
scales	to	mitigate	this	heterogeneity	and	ensure	adequate	tissue	
oxygenation	under	normal	conditions
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of	 heterogeneity	 in	 tissue	 oxygenation	 as	 compared	 to	
CTH.	 Capillary	 outflow	 saturation	 is	 representative	 of	
tissue	 oxygen	 levels,	 since	 capillary	 oxygen	 tensions	 are	
approximately	 equilibrated	 with	 tissue	 values.	 A	 COSH	
value	near	zero	implies	close	matching	between	perfusion	
and	metabolic	need	on	all	flow	pathways,	and	minimizes	
tissue	hypoxia	for	a	given	level	of	total	perfusion.

2.4	 |	 Mathematical theory for 
heterogeneity of combined variables

Heterogeneity	 in	 functional	parameters	of	 interest,	 such	
as	capillary	flow	rates,	results	from	variations	in	underly-
ing	variables	including	vessel	diameters,	lengths,	and	he-
matocrits.	The	resulting	functional	heterogeneity	depends	
not	only	on	the	variances	of	the	underlying	variables,	but	
also	on	their	covariances	(Vicaut,	1986).	The	effects	of	co-
variances	 on	 the	 variance	 of	 combined	 variables	 can	 be	
illustrated	by	considering	two	random	variables	X 	and	Y .	
The	variances	of	their	sum	and	product	are	given	by:

where	the	overbars	represent	the	expected	value.	In	general,	
the	 term	cov

(

X2,Y 2
)

	dominates	 the	 last	 two	 terms	 in	 the	
formula	for	the	product.	Analogous	relationships	apply	for	
multiple-	term	products	(Goodman,	1962).

If	 X 	 and	Y 	 are	 uncorrelated,	 then	 the	 variances	 of	
X + Y 	 and	XY 	 include	contributions	 from	 the	variances	
of	 X 	 and	Y .	 The	 overall	 variance	 increases	 due	 to	 the	
combined	variances.	If	X 	and	Y 	are	positively	correlated,	
then	the	variance	of	the	combined	variables	is	further	in-
creased.	For	example,	vessel	hematocrit	typically	shows	a	
positive	correlation	with	flow	rate	in	a	population	of	ves-
sels	due	to	the	effects	of	phase	separation	at	diverging	ves-
sel	bifurcations.	The	erythrocyte	flux	is	proportional	to	the	
product	of	hematocrit	and	flow	rate,	and	this	mechanism	
acts	to	increase	its	variance.

As	 discussed	 below,	 multiple	 mechanisms	 for	 local	
control	of	blood	flow	mitigate	the	adverse	effects	of	het-
erogeneity	on	tissue	oxygenation.	Suppose	that	a	random	
variable	X 	represents	the	underlying	heterogeneity,	and	Y 	
represents	a	controlled	variable,	such	as	vessel	flow	con-
ductance,	that	acts	to	mitigate	the	effects	of	variations	in	
X .	 In	 this	 case,	 cov(X ,Y )	 and	 cov

(

X2,Y 2
)

	 are	 typically	
negative	and	decrease	the	variance	of	the	resulting	func-
tional	variables	X + Y 	and	XY ,	according	to	the	above	for-
mulae.	This	provides	a	mathematical	basis	for	the	ability	
of	control	mechanisms	to	mitigate	heterogeneity.

3 	 | 	 CONTROL MECHANISMS 
AND THEIR ROLE IN MITIGATING 
HETEROGENEITY

Mechanisms	 for	 local	 control	of	blood	 flow	mitigate	 the	
intrinsic	 heterogeneity	 of	 the	 microcirculation	 and	 ac-
commodate	 temporal	 and	 spatial	 changes	 in	 demand	 or	
ventilation.	In	the	following	sections,	contrasting	charac-
teristics	of	various	flow	control	mechanisms	are	described,	
with	reference	to	their	effects	on	heterogeneity.

3.1	 |	 Acute versus chronic mechanisms

Acute	 control	 of	 blood	 flow	 is	 achieved	 primarily	 by	
changes	 in	diameters	of	arterioles	and	small	arteries,	ef-
fected	 by	 modulating	 smooth	 muscle	 tone	 (Davis	 et	 al.,	
2008).	At	the	capillary	level,	diameter	change	by	contrac-
tility	of	endothelial	cells	or	pericytes	may	also	play	a	role	
(Gonzales	et	al.,	2020;	Hamilton	et	al.,	2010;	MacDonald	
et	al.,	1995;	Ragan	et	al.,	1988).	Resulting	changes	in	blood	
flow	occur	over	seconds	to	minutes.	Longer	term	altera-
tions	in	blood	flow	over	hours	to	days	occur	via	structural	
remodeling,	 including	angiogenesis	and	pruning	as	well	
as	changes	in	arteriolar	and	venular	vessel	diameter	and	
wall	mass	(Secomb	et	al.,	2013).	Persistent	arteriolar	vaso-
constriction	or	dilation	can	 lead	 to	corresponding	 struc-
tural	remodeling	of	vessel	diameters	(Bakker	et	al.,	2000,	
2008;	Martinez-	Lemus	et	al.,	2004,	2009).	Because	of	this	
linkage	 between	 vasoactive	 and	 structural	 responses,	
acute	and	chronic	control	mechanisms	can	act	in	parallel	
to	control	tissue	perfusion	and	mitigate	heterogeneity	in	
tissue	oxygenation.

3.2	 |	 Metabolic versus hemodynamic  
mechanisms

A	control	system	can	be	viewed	as	a	combination	of	sen-
sors	 that	 detect	 physiological	 stimuli	 and	 effectors	 that	
can	modulate	 flow.	 In	microcirculation,	 the	control	 sys-
tem	must	match	flow	to	metabolic	needs	while	maintain-
ing	the	hemodynamic	efficiency	of	the	system.	Therefore,	
both	metabolic	and	hemodynamic	stimuli	must	be	sensed.	
The	resulting	signals	are	integrated	in	the	vessel	walls	and	
drive	 responses	 via	 effector	 mechanisms,	 which	 include	
changes	 in	vascular	smooth	muscle	tone	and	restructur-
ing	of	vessel	wall	components.

Ensuring	adequate	oxygen	supply	to	all	parts	of	tissue,	
despite	the	heterogeneity	of	both	supply	and	demand,	re-
quires	 local	 sensitivity	 to	 metabolic	 conditions.	 Hypoxia	
results	in	acute	vasodilation	in	many	tissues,	and	over	time	
leads	to	vascular	remodeling	and/or	new	vessel	growth	via	

var(X + Y ) = var(X ) + var(Y ) + 2 cov(X ,Y )

var(XY ) =X
2
var(Y )+Y

2
var(X )+var(X )var(Y )+cov

(

X2,Y 2
)

−[cov(X ,Y )]2−2X Y cov(X ,Y )
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angiogenesis.	Acute	 local	 control	of	arteriolar	diameters	
occurs	 in	 part	 via	 oxygen-	dependent	 vasoconstriction	 or	
dilation.	 Multiple	 tissues	 and	 blood	 oxygen-	dependent	
mechanisms	with	various	mediators	have	been	implicated	
in	 different	 tissues,	 although	 details	 are	 not	 well	 under-
stood	(Jackson,	2016;	Liu	et	al.,	2017).	Long-	term	control	
of	 vessel	 diameters	 also	 occurs	 via	 oxygen	 dependence,	
with	growth	factors	including	VEGF	produced	in	response	
to	hypoxia	(Reglin	&	Pries,	2014).

Appropriate	hemodynamic	conditions	must	be	main-
tained	 in	 the	 microcirculation	 to	 ensure	 that	 metabolic	
needs	are	met	efficiently.	According	to	Murray's	law,	the	
flow	 should	 be	 proportional	 to	 the	 cube	 of	 diameter	 in	
order	to	minimize	the	“cost”	of	pumping,	which	consists	
of	 the	 rate	of	mechanical	work	and	a	 term	proportional	
to	blood	volume	(LaBarbera,	1990;	Murray,	1926a,	1926b;	
Sherman,	 1981).	This	 condition	 is	 satisfied	 if	 wall	 shear	
stress	generated	by	blood	flow	is	approximately	constant	
throughout	 the	 network.	 Wall	 shear	 stress	 is	 sensed	 by	
endothelial	 cells	and	contributes	 to	both	short-	term	and	
long-	term	control	of	vessel	diameter.	Increased	shear	stress	
results	in	acute	vasodilation	(Pohl	et	al.,	2000)	and	chronic	
outward	remodeling	(Kamiya	et	al.,	1984;	Rodbard,	1975).

Analogously,	 acutely	 increased	 intravascular	 pres-
sure	 results	 in	 vasoconstriction	 by	 the	 myogenic	 re-
sponse	(Johnson	et	al.,	1991),	while	chronic	increases	in	
pressure	 lead	 to	 inward	remodeling	of	vessels	 (Heagerty	
et	 al.,	 1993).	 The	 law	 of	 Laplace	 implies	 that	 the	 domi-
nant	 stress	 in	 vessel	 walls	 resulting	 from	 intravascular	
pressure	 is	 circumferential	 stress.	 Changes	 in	 pressure	
are	 sensed	via	circumferential	 stress	 in	vessel	wall	 com-
ponents.	Mathematical	models	suggest	that	the	myogenic	
response	to	pressure	is	an	important	contributor	to	the	au-
toregulation	of	blood	 flow	(Carlson	et	al.,	2008).	 Inward	
remodeling	in	response	to	high	pressure	ensures	that	flow	
resistance	 is	higher	on	 the	arterial	 side	 than	 the	venous	
side	 of	 the	 systemic	 circulation.	 This	 has	 the	 important	
consequence	of	lowering	capillary	pressures	and	limiting	
fluid	exchange	between	capillaries	and	tissue	according	to	
the	Starling	equation	(Pries	et	al.,	2001).

These	regulatory	mechanisms	are	inherently	limited	in	
their	ability	to	achieve	homogeneous	tissue	oxygen	levels.	
Any	 control	 mechanism	 based	 on	 sensing	 oxygen	 levels	
requires	a	finite	signal	to	generate	responses,	since	it	can-
not	have	infinite	gain.	Therefore,	precise	control	of	oxygen	
levels	to	a	preset	level	is	not	possible.	Moreover,	vessels	are	
responding	 to	a	combination	of	hemodynamic	and	met-
abolic	 signals.	The	 metabolic	 signals	 are	 heterogeneous,	
which	implies	heterogeneity	in	the	responses	of	vessels	to	
a	given	oxygen-	dependent	signal.	The	oxygen	content	of	
arterioles	and	capillaries	generally	declines	in	the	down-
stream	 direction,	 as	 oxygen	 is	 delivered.	 Tissue	 oxygen	
levels	decline	with	radial	distance	from	vessels,	providing	

a	gradient	for	diffusion.	The	relationship	between	hemo-
dynamic	and	metabolic	control	mechanisms	is	illustrated	
schematically	in	Figure	5a.

3.3	 |	 Feedforward versus feedback  
mechanisms

The	 classical	 paradigm	 of	 homeostasis	 is	 prevalent	 in	
physiological	 reasoning.	 According	 to	 this	 principle,	 de-
partures	 of	 state	 variables	 from	 desired	 levels	 result	 in	
stimuli	that	tend	to	restore	the	variable	to	its	desired	level,	
implying	 the	existence	of	 feedback	control	mechanisms.	
The	metabolic	and	hemodynamic	responses,	as	discussed	
above,	are	examples	of	feedback	control	for	oxygen	levels	
and	wall	shear	stresses.

Feedforward	mechanisms	represent	a	distinct	and	im-
portant	mode	of	control	in	the	circulatory	system.	In	feed-
forward	 control,	 a	 signal	 other	 than	 hypoxia	 associated	
with	 increased	 metabolic	 demand	 provides	 the	 stimulus	
for	an	increase	in	blood	flow.	Typically,	this	signal	appears	
in	advance	of	the	decrease	in	oxygen	levels	resulting	from	
the	 increased	 metabolic	 activity.	 A	 feedforward	 mecha-
nism	 generally	 allows	 a	 faster	 response	 than	 a	 feedback	
mechanism,	and	can	prevent	or	even	reverse	an	unfavor-
able	change	in	the	controlled	variable,	such	as	a	decrease	
in	tissue	oxygen	levels.	Control	by	feedback	and	feedfor-
ward	 mechanisms	 is	 illustrated	 schematically	 in	 Figure	
5b.

In	several	 tissues,	 increases	 in	metabolic	demand	are	
triggered	 by	 neural	 activity,	 and	 the	 associated	 rapid	 re-
lease	 of	 potassium	 ions	 and	 neurotransmitters	 into	 the	
extracellular	space	provides	potential	signals	for	feedfor-
ward	control.	In	skeletal	muscle,	the	sensing	of	increased	
interstitial	potassium	upon	stimulation	has	been	shown	to	
contribute	 to	 the	vasodilator	response	 (Armstrong	et	al.,	
2007).	 Simulations	 indicate	 that	 sensing	 of	 potassium	
concentration	by	capillaries	may	 increase	blood	flow	via	
upstream	 conducted	 signals	 in	 anticipation	 of	 increased	
oxygen	demand	(Lo	et	al.,	2004).

In	the	cerebral	cortex,	the	increase	in	blood	flow	associ-
ated	with	increased	brain	activity	is	termed	neurovascular	
coupling.	The	 relative	 increase	 in	 flow	 is	observed	 to	be	
larger	 than	 the	 relative	 increase	 in	oxygen	consumption	
(Masamoto	et	al.,	2008).	In	spite	of	the	fact	that	the	brain	
is	highly	intolerant	of	hypoxia,	neurovascular	coupling	is	
not	 dependent	 on	 changes	 in	 oxygen	 levels	 (Leithner	 &	
Royl,	2014).	Experimental	evidence	shows	arterial	and	ar-
teriolar	dilation	in	response	to	somatosensory	stimulation	
(Drew	et	al.,	2011).	These	observations	imply	that	feedfor-
ward	control	plays	a	major	role	in	neurovascular	coupling.

In	 the	 heart,	 sympathetic	 activation	 of	 α-	
adrenoreceptor-	mediated	 vasoconstriction	 as	 well	 as	
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β-	adrenoreceptor	 mediated	 vasodilation	 result	 in	 a	 net	
increase	 in	 supply	 in	 a	 feedforward	 manner	 indepen-
dent	of	oxygen	levels	in	anticipation	of	increased	meta-
bolic	demand	in	the	heart	(Tune	et	al.,	2020).	Coronary	
sinus	oxygen	 tension	has	been	shown	 to	 improve	with	
alpha-	blockade	but	decrease	with	combined	alpha-		and	
beta-	blockade	relative	to	control	conditions,	suggesting	
that	feedforward	vasodilation	plays	an	important	role	in	

cardiac	metabolism-	perfusion	matching	(Gorman	et	al.,	
2000).

The	 characteristics	 of	 feedforward	 control	 make	 it	
well	suited	to	provide	a	rapid	response	to	time-	varying	
metabolic	demands	driven	by	extrinsic	factors.	However,	
it	 does	 not	 respond	 directly	 to	 the	 controlled	 variable,	
tissue	oxygenation.	Therefore,	feedforward	control	must	
act	 in	 concert	 with	 oxygen-	sensitive	 feedback	 mecha-
nisms	to	prevent	tissue	hypoxia,	given	that	oxygen	sup-
ply	 and	 demand	 are	 heterogeneous.	 Since	 brain	 tissue	
is	 intolerant	 of	 hypoxia,	 the	 lack	 of	 acute	 vascular	 re-
sponses	 to	 hypoxia	 in	 brain	 is	 surprising	 (Leithner	 &	
Royl,	2014).	Simulations	suggest	that	a	possible	resolu-
tion	to	this	apparent	paradox	may	be	that	the	long-	term	
processes	of	angiogenesis	and	structural	adaptation	are	
sensitive	 to	oxygen	levels	 (Alberding	&	Secomb,	2021),	
ensuring	 that	 tissue	 is	 well	 oxygenated	 under	 resting	
conditions.

3.4	 |	 Positive versus negative feedback

Although	homeostasis	 in	physiology	 is	generally	consid-
ered	to	be	achieved	by	means	of	negative	feedback	mech-
anisms,	 normal	 biological	 responses	 can	 also	 result	 in	
positive	feedback	loops	in	hemodynamic	control.

Small	 arteries	 and	 arterioles	 generally	 respond	 to	 in-
creased	 internal	 pressure	 by	 inward	 remodeling.	 This	
response	plays	an	important	role	in	homeostasis	by	con-
trolling	capillary	pressure,	as	already	discussed.	However,	
this	 mechanism	 introduces	 positive	 feedback	 in	 the	 re-
sponse	 to	 an	 increase	 in	 arterial	 pressure.	The	 resulting	
inward	 remodeling	 increases	 peripheral	 resistance	 and	
requires	still	higher	arterial	pressures	to	achieve	adequate	
perfusion.	This	mechanism	is	hypothesized	to	contribute	
to	 the	 development	 and	 maintenance	 of	 hypertension	
(Folkow,	1990;	Pries	et	al.,	1999).

The	structural	response	to	increased	wall	shear	stress	
can	 also	 create	 positive	 feedback	 behavior.	 In	 a	 vessel	
with	 a	 fixed	 flow	 rate,	 this	 response	 generates	 negative	
feedback	that	regulates	shear	stress	to	a	set	point	(Kamiya	
et	al.,	1984;	Rodbard,	1975).	However,	the	same	response	
is	destabilizing	when	two	vessels	are	connected	in	paral-
lel	 (Hacking	et	al.,	 1996).	For	example,	 if	 two	vessels	of	
the	same	length	are	fed	by	the	same	driving	pressure,	the	
vessel	with	the	larger	diameter	experiences	a	larger	wall	
shear	 stress	and	 therefore	 tends	 to	 increase	 in	diameter,	
while	 the	smaller	vessel	shrinks	and	is	eventually	elimi-
nated	unless	stabilized	by	metabolic	stimuli	(Pries	et	al.,	
1998).	 Furthermore,	 in	 a	 network	 with	 short	 and	 long	
flow	 pathways,	 the	 shear	 stress	 response	 tends	 to	 cause	
short	 channels	 to	 increase	 in	 diameter,	 forming	 func-
tional	 shunts.	Theoretical	 studies	suggest	 that	metabolic	

F I G U R E  5  Schematic	representation	of	control	mechanisms	
in	the	circulatory	system.	(a)	Interaction	of	metabolic	and	
hemodynamic	control	mechanisms.	The	solid	arrows	indicate	the	
property	that	is	primarily	controlled	by	responses	to	each	type	
of	stimulus.	All	control	mechanisms	act	via	changes	in	vessel	
diameters,	and	therefore	influence	all	of	the	controlled	properties.	
This	cross-	talk	is	represented	by	the	dashed	lines.	Because	of	this	
cross-	talk,	multiple	variables	cannot	be	controlled	individually	
by	a	single	mechanism	(variation	in	vessel	diameters),	and	some	
heterogeneity	in	controlled	properties	is	inevitable.	(b)	Illustration	
of	feedback	and	feedforward	mechanisms	for	control	of	tissue	
oxygenation.	In	feedback	control,	changes	in	oxygen	levels	drive	
changes	in	vessel	diameters.	In	feedforward	control,	signals	
derived	directly	from	the	metabolic	activity	drive	changes	in	vessel	
diameters
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signals,	acting	 in	combination	with	upstream	conducted	
responses,	 must	 be	 present	 to	 counteract	 this	 phenome-
non	(Pries	et	al.,	1998,	2010).

The	particulate	nature	of	blood	can	also	create	positive	
feedback	 effects.	 In	 a	 diverging	 microvessel	 bifurcation,	
the	 daughter	 vessel	 with	 higher	 flow	 generally	 receives	
a	higher	hematocrit	(Pries	et	al.,	1989),	and	existing	flow	
heterogeneity	 leads	 to	a	higher	 level	of	heterogeneity	 in	
erythrocyte	 fluxes.	 Oxygen	 saturation-	dependent	 ATP	
release	from	erythrocytes	has	been	shown	to	act	as	a	sig-
naling	mechanism	for	metabolic	regulation	of	blood	flow	
(Ellsworth	et	al.,	2016).	In	a	vessel	branch	receiving	low	
flow,	the	hematocrit	is	reduced.	Simulations	suggest	that	
this	is	destabilizing	in	the	context	of	ATP	signaling	of	hy-
poxia	by	erythrocytes,	 since	vessels	with	 low	hematocrit	
and	low	oxygen	levels	are	unable	to	generate	ATP	signals	
to	 increase	 flow	 (Fry	 &	 Secomb,	 2021;	 Roy	 et	 al.,	 2012).	
Vessels	with	 low	or	zero	hematocrit	can	arise	 in	hetero-
geneous	networks	under	conditions	of	 low	demand,	but	
as	demand	increases,	 the	number	of	such	vessels	 is	pre-
dicted	to	decrease,	representing	a	mechanism	of	capillary	
recruitment	(Fry	et	al.,	2013).

The	presence	of	positive	 feedback	 loops	 in	 the	con-
trol	 of	 blood	 flow	 tends	 to	 increase	 the	 heterogeneity	
of	flow	and	tissue	oxygenation.	An	appropriate	balance	
between	 stabilizing	 negative	 and	 destabilizing	 positive	
feedback	 mechanisms	 is	 important	 for	 the	 control	 of	
heterogeneity.

3.5	 |	 Conducted versus local responses

In	a	network	of	vessels,	the	flow	in	any	segment	depends	
on	 all	 the	 diameters	 in	 the	 flow	 pathway	 involving	 that	
segment.	In	addition,	the	sensors	and	effectors	involved	lie	
at	different	points	in	the	vascular	network.	Effective	con-
trol	of	blood	flow	therefore	requires	coordinated	changes	
in	diameters	of	vessels	along	the	flow	pathway,	implying	
the	need	for	communication	of	control	signals	upstream	
and	downstream	(Secomb	&	Pries,	2002).

Acute	 flow	 regulation	 is	 achieved	 primarily	 by	 con-
traction	 and	 dilation	 of	 arterioles,	 since	 capillaries	 and	
venules	 have	 limited	 contractile	 ability.	 The	 upstream	
propagation	 of	 metabolic	 signals	 causing	 arteriolar	 va-
sodilation	is	a	 therefore	critical	component	of	 local	 flow	
regulation	(Segal,	2015).	This	communication	is	achieved	
by	 conducted	 responses	 along	 vessel	 walls.	 Locally	 gen-
erated	 metabolic	 signals	 in	 capillaries	 and	 terminal	
arterioles	cause	changes	in	endothelial	cell	membrane	po-
tential,	 which	 are	 transmitted	 upstream	 over	 millimeter	
distances	 via	 gap	 junctions	 connecting	 endothelial	 cells	
(Bearden	 et	 al.,	 2004;	 Gustafsson	 &	 Holstein-	Rathlou,	
1999).	 Vascular	 smooth	 muscle	 cells	 also	 participate	 in	

conducted	responses,	and	several	signaling	pathways	are	
involved	(Segal,	2015;	Sinkler	&	Segal,	2017).

Long-	term	 structural	 adaptation	 of	 vessel	 diameters	
requires	coordination	of	both	upstream	and	downstream	
responses.	 In	 particular,	 such	 communication	 is	 essen-
tial	to	avoid	the	formation	of	functional	shunts	resulting	
from	 short	 flow	 pathways,	 as	 already	 discussed	 (Pries	
et	 al.,	 1998,	 2010).	 Downstream	 communication	 can	 be	
accounted	for	by	convective	transport	of	metabolites	and	
signal	 substances	 in	 the	 blood	 stream,	 while	 upstream	
communication	depends	on	conducted	responses.

In	the	lung,	a	mismatch	of	ventilation	and	perfusion,	
resulting	from	the	heterogeneity	of	both	variables,	results	
in	decreased	oxygen	uptake.	Under	conditions	of	high	ox-
ygen	demand,	such	as	exercise,	hypoxic	pulmonary	vaso-
constriction	(HPV)	acts	 to	 improve	ventilation-	perfusion	
matching	 by	 reducing	 flow	 to	 poorly	 ventilated	 regions	
(Grimmer	&	 Kuebler,	 2017).	Small	pulmonary	arterioles	
have	sparse	smooth	muscle	coverage	and	limited	contrac-
tile	ability;	the	results	of	simulations	accounting	for	this	
imply	an	essential	role	for	conducted	responses	 in	prop-
agating	signals	to	larger	arterioles	(Johnson	et	al.,	2021).

Because	conducted	responses	require	continuous	com-
munication	 between	 endothelial	 cells	 over	 significant	
distances,	they	are	vulnerable	to	disruption	if	endothelial	
cells	 are	 destabilized.	 Both	 acute	 and	 structural	 control	
mechanisms	 depend	 on	 conducted	 responses,	 and	 their	
ability	 to	 ameliorate	 the	 effects	 of	 heterogeneity	 is	 then	
compromised.	This	effect	is	hypothesized	to	underlie	the	
structural	disorganization	that	is	typical	of	tumor	vascu-
lature	 (Pries	 et	 al.,	 2010).	 In	 the	 lung,	 disruption	 of	 en-
dothelial	communication	has	been	observed	during	lung	
infection	and	endotoxemia,	leading	to	impairment	of	the	
HPV	response	and	ventilation-	perfusion	matching,	and	to	
hypoxemia	(Grimmer	&	Kuebler,	2017;	Wang	et	al.,	2012).	
In	a	study	of	blood	flow	control	in	skeletal	muscle	of	young	
versus	adult	and	elderly	mice,	microvascular	architecture	
was	preserved	in	aging,	but	impaired	post-	contraction	va-
sodilation	 was	 noted	 in	 older	 animals	 and	 attributed	 to	
impaired	upstream	conducted	responses	 (Bearden	et	al.,	
2004).

4 	 | 	 DISCUSSION

Heterogeneity	 of	 structural	 and	 functional	 variables	 in	
the	microcirculation	 is	an	 inevitable	consequence	of	 the	
processes	 of	 microvascular	 growth	 and	 of	 the	 spatially	
and	 temporally	 varying	 demands	 placed	 upon	 it.	 This	
heterogeneity	 has	 generally	 detrimental	 effects	 on	 the	
performance	 of	 the	 system,	 particularly	 with	 regard	 to	
oxygen	 transport.	Multiple	control	mechanisms	of	acute	
flow	 regulation	 and	 long-	term	 structural	 adaptation	 act	
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to	mitigate	the	effects	of	this	heterogeneity,	by	improving	
the	matching	between	oxygen	delivery	and	demand	in	the	
systemic	 circulation	 and	 between	 ventilation	 and	 perfu-
sion	in	the	lungs.

Under	normal	resting	conditions,	the	oxygen	delivery	
system	 has	 substantial	 reserve	 capacity,	 and	 adequate	
tissue	oxygenation	is	achieved	without	the	need	for	tight	
control	of	flow	distribution.	However,	under	conditions	of	
physiological	stress,	as	 for	example	 in	exercise,	 the	need	
for	 close	 matching	 of	 supply	 with	 demand	 increases,	
and	the	role	of	 local	control	mechanisms	becomes	more	
critical.

The	presence	of	control	mechanisms	does	not	neces-
sarily	 result	 in	 reduced	 heterogeneity	 in	 hemodynamic	
variables.	 A	 network	 with	 heterogeneous	 structure	 may	
require	 a	 high	 degree	 of	 heterogeneity	 in	 blood	 flow	 to	
achieve	 adequate	 tissue	 oxygenation.	 The	 mathematical	
analysis	 of	 heterogeneity	 of	 combined	 variables	 implies	
that	control	mechanisms	may	act	to	increase	flow	or	cap-
illary	transit	time	heterogeneity	while	decreasing	hetero-
geneity	 in	 functional	 parameters	 such	 as	 tissue	 oxygen	
levels.

These	 considerations	 lead	 to	 the	 conclusion	 that	 the	
functioning	 of	 local	 control	 mechanisms	 to	 mitigate	 the	
effects	of	heterogeneity	is	a	basic	requirement	for	normal	
tissue	 function,	 particularly	 under	 conditions	 of	 physio-
logical	stress.	This	conclusion	has	significant	implications	
for	 the	understanding	and	management	of	medical	con-
ditions	 in	 which	 tissue	 oxygenation	 is	 impaired.	 In	 the	
clinical	setting,	treatment	approaches	are	often	based	on	
global	parameter	values	without	consideration	of	 condi-
tions	at	the	microscopic	level,	where	high	levels	of	hetero-
geneity	may	exist.	In	pathophysiological	conditions,	as	for	
example	in	sepsis,	compromise	of	the	regulatory	mecha-
nisms	designed	to	compensate	for	heterogeneity	can	lead	
to	organ	dysfunction	or	failure	(Bateman	et	al.,	2015;	Ellis	
et	al.,	2002;	Roy	&	Secomb,	2021).	Simply	increasing	car-
diac	output	by	increasing	intravascular	volume	and	stroke	
volume	 may	 not	 address	 issues	 of	 heterogeneity	 at	 the	
microvascular	level.	Similarly,	increasing	inspired	oxygen	
concentration	in	the	lung	may	do	little	to	improve	arterial	
oxygenation	in	acute	respiratory	distress	syndrome	if	the	
severe	ventilation-	perfusion	mismatch	is	present.

In	 the	 heart,	 ischemia	 as	 manifested	 by	 angina	 can	
occur	in	spite	of	angiographically	normal	coronary	arter-
ies.	This	microvascular	angina	is	thought	to	be	associated	
with	abnormal	vasodilatory	responses	at	 the	microcircu-
latory	 level	as	a	consequence	of	endothelial	dysfunction	
(Cannon	&	Epstein,	1988;	Rahman	et	al.,	2019).

In	 the	 brain,	 simulations	 have	 suggested	 that	 higher	
CBF	 may	 lead	 to	 decreased	 oxygen	 consumption	 due	 to	
shunting	effects	as	flow	increases,	termed	“malignant	cap-
illary	 transit	 time	 heterogeneity”	 (Angleys	 et	 al.,	 2015).	

Impairments	 in	 neurovascular	 coupling	 are	 present	 in	
various	disease	states	such	as	stroke	(Girouard	&	Iadecola,	
2006),	 Alzheimer's	 disease	 (Kisler	 et	 al.,	 2017)	 and	 vas-
cular	dementia	(Iadecola,	2013).	 In	such	cases,	 ischemic	
damage	can	be	exacerbated	by	diversion	of	collateral	flow	
away	from	injured	areas	(Jackman	&	Iadecola,	2015).

Systemic	inflammatory	states	such	as	sepsis	can	cause	
disruption	of	endothelial	function	(Dolmatova	et	al.,	2020),	
and	in	some	cases	undermine	electrical	coupling	between	
endothelial	cells	mediated	by	connexins	in	gap	junctions	
(Tyml,	2011).	In	such	cases,	reduction	of	inflammation	or	
more	specifically,	restoration	of	inter-	endothelial	coupling	
may	serve	as	a	therapeutic	target	to	restore	flow	regulation	
and	prevent	hypoxia	and	organ	damage.

The	working	range	of	acute	flow	regulation	by	arteri-
oles	is	determined	by	the	vessel	wall	properties.	If	vascular	
smooth	muscle	is	fully	relaxed,	then	further	vasodilation	is	
impossible,	and	the	vessel	is	insensitive	to	additional	vaso-
dilator	stimuli.	A	tissue	in	a	vasodilated	state	has	reduced	
capability	to	redistribute	flow	according	to	local	needs.	In	
this	condition,	a	constitutive	vasoconstriction	may	be	ben-
eficial,	by	restoring	a	regime	in	which	regulatory	mecha-
nisms	can	respond	to	local	tissue	hypoxia.	This,	along	with	
its	ability	to	increase	mean	arterial	pressure,	provides	an	
additional	rationale	for	the	use	of	vasopressors	in	critically	
ill	patients.

However,	 vasopressor	 therapy	 can	 have	 deleterious	
effects	on	tissue	perfusion	by	increasing	afterload,	which	
can	 result	 in	 decreased	 cardiac	 output	 and	 cardiac	 isch-
emia.	Furthermore,	therapeutic	doses	of	vasopressors	can	
cause	decreased	oxygen	consumption	and	regional	organ	
blood	 flow	 (Demiselle	 et	 al.,	 2020),	 particularly	 in	 the	
mesenteric	and	renal	circulation	(Hiltebrand	et	al.,	2007;	
Malay	 et	 al.,	 2004).	 Different	 pressors	 may	 have	 varying	
abilities	to	restore	systemic	parameters	while	maintaining	
microcirculatory	perfusion	(van	Loon	et	al.,	2020).

In	 summary,	 extrinsic	 and	 intrinsic	 heterogeneities	
at	the	level	of	the	microvasculature	are	inevitable.	Both	
structural	adaptation	and	flow	regulation	work	in	con-
cert	at	different	time	scales	to	mitigate	their	effects	and	
maintain	 oxygen	 uptake	 in	 the	 lung	 and	 delivery	 to	
tissue.	 This	 is	 accomplished	 by	 regulating	 blood	 flow	
to	 accommodate	 variations	 in	 oxygen	 demand	 as	 well	
as	 mitigating	 the	 effects	 of	 heterogeneity	 in	 the	 oxy-
gen	delivery	 system.	Failure	of	 these	 regulatory	mech-
anisms	 can	 result	 in	 poor	 oxygen	 delivery	 even	 in	 the	
presence	of	adequate	overall	tissue	perfusion.	In	patho-
physiological	 conditions	 resulting	 in	 tissue	 hypoxemia	
and	 organ	 dysfunction,	 restoration	 of	 these	 regulatory	
mechanisms	may	be	beneficial.	This	may	take	the	form	
of	restoring	deficits	 in	communication,	 for	example	by	
addressing	 inflammation	and	 its	effects	on	endothelial	
function,	 as	 well	 as	 restoring	 conditions	 under	 which	
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these	 regulatory	 mechanisms	 are	 active	 by	 using	 pres-
sors	 to	 modulate	 overall	 vascular	 tone.	 Increased	 un-
derstanding	of	the	consequences	of	heterogeneity	at	the	
microvascular	level	may	lead	to	therapeutic	strategies	to	
prevent	organ	failure	in	critically	ill	patients.
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